## Theme 2: Modeling, Data Assimilation and Advanced Computing

Georg A. Grell WRF-Chem





#### **Outline**

- Background on WRF-Chem
- Focus on Aerosol the weather/air quality, and climate link
- Example of volcanic ash-fall prediction
- Example of a study to show the impact of smoke from wildfires on weather
- Chemical data assimilation using NCEP's Grid Point Statistical Interpolation (GSI) system and WRF-Chem
- Ongoing and future work

## WRF-Chem: widely used nationally and internationally, development led by ESRL

- Main developer groups: ESRL (GSD, CSD, PSD), Pacific Northwest Laboratory (PNNL), NCAR
- Other contributors: NASA, University of Chile, Center for Weather Forecast and Climate studies (CPTEC in Brazil), Max Planck Institute (MPI Mainz),....
- ESRL develops, collects new developments, provides tutorials, documentation and user support for a large number of users nationally and internationally (also includes Air Force Weather Agency (AFWA), also evaluates new modules (CSD)
- WRF-Chem is a state-of-the-art modeling system with chemistry and aerosol modules that range from very simple to very complex, and can be used from global to local scales

#### **Current Possible Applications**





sm= ?  $sm==2 \hspace{1.5cm} \text{WRF-Chem, with Fires and Full Chem/Physics}$ 



OUTPUT FROM WRF V3.1.1 MODEL WE = 326; SN = 236; Levels = 35; Dis = 2km; Phys Opt = 2; PBL Opt = 1; Gu Opt = 0

### Global Climate Change

#### Example of T difference caused by semi-direct effect







# Aerosols may be the most important link between weather, air quality, and global climate change.



#### **Available Aerosols Modules**

- PM advection, transport, emissions and deposition only
- Bulk approach (from GOddard Chemistry Aerosol Radiation and Transport Model, GOCART)
  - Run in real time at ESRL for Rapid Refresh, and Highresolution Rapid Refresh (RR-Chem and HRRR-Chem)
  - Numerically very efficient
- 3. Modal approach
  - Used at ESRL for air quality forecasts on smaller experimental domains and for field experiments
  - Used also for research applications
- 4. Sectional approach
  - Research applications





#### **Aerosol Effects Included in WRF/Chem**



Direct and semi-direct effects are caused through the direct interaction of aerosols with radiation



Indirect effects are caused because of the interaction of aerosols with cloud microphysics (through Cloud Condensation Nuclei)



## Important sources for aerosols: Fires and Volcanoes





Both are a threat for health and aviation





## Tephra-fall deposits (g/m²), Redoubt Volcano south-central Alaska, explosive 43-minute eruption 1989 December 15, 1989





## WRF-Chem simulation on effects of fires on weather

- 1) 10-day spin up
- 2) 2-day simulations
  - with and without fires
  - GOCART as well as complex chemistry setup
  - Initial and boundary conditions from (1)
- 3) Fires initialized using WF-ABBA, MODIS, as well as aerial and ground observations





## Domain 2, dx=2km, Box averages (180km²) over fairly dry and very smoky areas at July 3, 21Z





## Chemical data assimilation: ARW/WRF-Chem and GSI

#### 2 months worth of WRF/Chem runs:

- 1. New England 2004 to estimate background error covariances and length scales
- Houston 2006 for evaluation



 27-km resolution over central and eastern USA



previous day (persistence)



### Chemical data assimilation: **ARW-WRF/Chem and GSI**

#### Ongoing project:

- Develop and deliver operational system for air quality and weather forecasting and assimilation of weather and aerosol data for Air Force Weather Agency (Cooperative project ESRL/NCAR)
- Assimilation of AOD and surface PM data, using WRF-Chem and GSI
- Rapid Refresh framework (dx=13km for North American Grid)
- Also to be used for High Resolution Rapid Refresh (HRRR, dx=3km over continental US)
- Determine effect of chemical data assimilation on meteorological data assimilation

Currently calculating background error statistics from RR-Chem





## Future line-up for WRF/Chem, only current ESRL work

- Aerosol interaction with radiation and microphysics
- Chemical data assimilation
  - 4dvar, collaboration with U of Iowa, U of Colorado, and ESRL/GSD
  - 3dvar and EnsKF
  - Implementation of ESRL's chemical data assimilation approach at NCEP (System will be transferred to NOAA/ARL)
- Provide AFWA with operational forecast system (possible impact on visibility as well as weather forecasts)
- More choices for "interactive" parameterizations, shallow convection (ESRL/GSD), NMM-WRF/Chem will become available
- Implementation of all chemistry modules into FIM





## **Example of what is coming: LES simulations of Aerosol Effects on Cloud Morphology via Drizzle**

Albedo (research in CSD) Albedo



Closed-cell Albedo ~ 0.6 (nonprecipitating)

high aerosol



WRF Model + 2-moment microphysics; 60-km domain; Dx = Dy = 300 m Dz = 30 m





Open-cell
Albedo ~ 0.2
(precipitating)

low aerosol



Wang and Feingold, 2009

